Maxima of Moving Sums in a Poisson Random Field
نویسنده
چکیده
In this paper we examine the extremal tail probabilities of moving sums in a marked Poisson random field. These sums are computed by adding up the weighted occurrences of events lyingwithin a scanning set of fixed shape and size. We also provide an alternative representation of the constants of the asymptotic formulae in terms of the occupation measure of the conditional local random field at zero, and extend these representations to the constants of asymptotic tail probabilities of Gaussian random fields.
منابع مشابه
Maxima of Moving Sums in a Poisson Random Field by Hock
The extremal tail probabilities of moving sums in a marked Poisson random field is examined here. These sums are computed by adding up the weighted occurrences of events lying within a scanning set of fixed shape and size. Change of measure and analysis of local random fields are used to provide tail probabilities. The asymptotic constants are initially expressed in a form that seems hard to ev...
متن کاملOn the bounds in Poisson approximation for independent geometric distributed random variables
The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method. Some results related to random sums of independent geometric distributed random variables are also investigated.
متن کاملMaxima of Asymptotically Gaussian Random Fields and Moderate Deviation Approximations to Boundary-crossing Probabilities of Sums of Random Variables with Multidimensional Indices by Hock Peng Chan and Tze
Several classical results on boundary-crossing probabilities of Brownian motion and random walks are extended to asymptotically Gaussian random fields, which include sums of i.i.d. random variables with multidimensional indices, multivariate empirical processes, and scan statistics in change-point and signal detection as special cases. Some key ingredients in these extensions are moderate devia...
متن کاملMaxima of Asymptotically Gaussian Random Fields and Moderate Deviation Approximations to Boundary Crossing Probabilities of Sums of Random Variables with Multidimensional Indices
Several classical results on boundary crossing probabilities of Brownian motion and random walks are extended to asymptotically Gaussian random fields, which include sums of i.i.d. random variables with multidimensional indices, multivariate empirical processes, and scan statistics in change-point and signal detection as special cases. Some key ingredients in these extensions are moderate devia...
متن کاملMonotonicity and Aging Properties of Random Sums
In this paper, we discuss the distributional properties of random sums. We first derive conditions under which the distribution of a binomial sum is PF2 and then show under the same conditions the distribution of a Poisson sum is PF2 by approximating a Poisson sum by a sequence of binomial sums. The PF2 property reveals the monotonicity property of the reversed failure rates of certain compound...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009